Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2017 EN2ES02 Engineering Mechanics Programme: Diploma Branch/Specialisation: All

Duration: 3 Hrs.

Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1	i.	of action of all the forces passing	1						
		through a single point.							
		(a) Concurrent (b	b) Non-concurrent						
		(c) Parallel (d	l) None of these						
	ii.	A beam is freely rest on the two	end support is known as	1					
		(a) Simply supported beam (b	b) Fixed beam						
		(c) Over hanging beam (d	l) Cantilever beam						
	iii.	Kinetic energy of a particle is:		1					
		(a) $\frac{3}{2}$ mv ² (b) mv (c	c) $\frac{1}{2}$ mv ² (d) mv ²						
	iv.	Unit of power is							
		(a) Watt/s (b) J/s (c	c) N/s (d) m/s						
	v. The point at which the entire weight of an object is assumed to								
		acting is called							
		(a) Centroid (b	(b) Center of gravity						
		(c) Median (d	(d) Moment of inertia						
	vi.	Moment of inertia of an area is minimum about an axis.							
		(a) Passing through top face (b	b) Passing through bottom face						
		(c) Passing through centroid (d) None of these							
	vii.	Unit of impulse.		1					
		(a) Kg-m (b) Kg-s (c	c) N/s (d) Kg-m/s						
	viii.	In an inelastic collision conserved.	is conserved andis not	1					
		(a) Energy, momentum (b	o) Energy, impulse						
		(c) Momentum, energy (d	l) Impulse, energy						
			P.T.	О.					

[2]

- ix. The coefficient of static force is always coefficient of 1 dynamic friction
 (a) Equal (b) More than (c) Less than (d) Insufficient data
 x. In the case of belt friction, relationship between tension on tight 1
- x. In the case of belt friction, relationship between tension on tight side (T₂) and slack side (T₁) is (a) T₁ = T₂ $\mu\theta$ (b) T₂ = T₁ $\mu\theta$ (c) T₁ = T₂ $e^{\mu\theta}$ (d) T₂ = T₁ $e^{\mu\theta}$
- Q.2 i. Define Lami's theorem?ii. Define law of parallelogram of forces with diagram. Write
 - expression of resultant of forces? iii. Write short note on 5 (a) Polygon law of forces

2

3

3

5

2

3

- (b) Varignon's theorem
- OR iv. Determine the values of the forces acting at A and B for the force **5** system shown below?

O 3 i Define Potential and Kinetic energy with example	-
	2
Q.5 I. Define I otential and Kinetic chergy with example.	_

- ii. Define Indicated power, Brake Power and Efficiency.
- iii. Derive an expression for any two equation of motion.
- OR iv. A body of mass 2.5 Kg is moving with a constant velocity of 5 5 m/s. In order to bring it to rest at a distance of 4m. Calculate the work done and force required?
- Q.4 i. Difference between centroid and center of gravity.[Any two]ii. State and prove parallel axis theorem.
 - iii. Write formula of coordinate of centroid for given geometrical 5 shape.

(a) Rectangle (b) Triangle (c) Circle

(d) Semi-Circle (e) Quarter-Circle

OR iv. Find the centroid of a 100mmX 150mm X 10mmT-section.

Q.5	i.	What is law of conservation of momentum?	2
	ii.	Define coefficient of restitution force, and its value for elastic and plastic collision.	3
	iii.	Drive an expression for elastic collision of two balls moving along a straight line.	5
OR	iv	A 10 kg mass travelling 2 m/s meets and collides elastically with a 2 kg mass travelling 4 m/s in the opposite direction. Find the final velocities of both objects.	5
Q.6	i.	Define angle of repose with diagram?	2
Q.6	i. ii.	Define angle of repose with diagram? Write any three applications of static and dynamic friction.	2 3
Q.6	i. ii. iii.	Define angle of repose with diagram? Write any three applications of static and dynamic friction. Give any five differences between open and cross belt drive.	2 3 5

EN2ES02 Engineering Mechanics Marking Scheme

Q.1	i.	A body is in equilibrium, lines of action of all the forces passing through a single point.	1
	ii.	A beam is freely rest on the two end support is known as	1
		(a) simply supported beam	
	iii.	Kinetic energy of a particle is:	1
		(c) $\frac{1}{2}$ mv ²	
	iv.	Unit of power is	1
		(b) J/s	
	v.	The point at which the entire weight of an object is assumed to be acting is called	1
		(b) center of gravity	
	vi.	Moment of inertia of an area is minimum about an axis.	1
		(c) passing through centroid	
	vii.	Unit of impulse.	1
		(d) Kg-m/s	
	viii.	In as inelastic collision is conserved andis not conserved.	1
		(c) momentum, energy	
	ix.	The coefficient of static force is always coefficient of dynamic friction	1
		(b) more than	
	x.	In the case of belt friction, relationship between tension on tight side(T_2) and slack side (T_1) is .	1
		(d) $I_2 = I_1 e^{r^2}$	
Q.2	i.	Lami's theorem	2
	ii.	Law of parallelogram of forces with diagram	
		Expression of resultant of forces	
	Ans	This law is used to determine the resultant of two coplanar forces acting on a point. It states that, <i>if two forces acting on a point be represented in magnitude and direction</i> <i>by the two adjacent sides of a parallelogram, then their resultant is represented in magnitude</i> <i>and direction by the diagonal of the parallelogram passing through that point.</i>	1

Ans

At equilibrium,	$R_A + R_B = 20 + 30 = 50 N$
-----------------	------------------------------

Taking moments about point A gives:

clockwise moment = anticlockwise moment

1

1

1

1

Hence, $20 \times 20 + 30 \times 50 = R_{\rm B} \times 76$

i.e. $400 + 1500 = 76 R_B$

- from which, force acting at B, $\mathbf{R}_{B} = \frac{1900}{76} = 25 \text{ N}$
- From equation (1), $R_A + 25 = 50$
- from which, $R_A = 50 25 = 25 \text{ N}$ 1

Q.3	i.	Define	Potential				1		3.	Circle			
		I	Kinetic energy				1				d	d	
	ii.	Define	Indicated pow	ver			1				2	2	
		I	Brake Power				1		4	a :			
		I	Efficiency.				1		4.	Semi-	d	Ar	
	iii.	Derive	an expression	of equatio	n of motion. [2.	Each	5			circle	$\frac{u}{2}$	$\frac{41}{2}$	
OR	iv	A body	v of mass 2.5	Kg is mov	ving with a cons	tant velocity of 5 m/s. In					Z	3π	
		order t	o bring it to re	st at a dist	ance of 4m. Cal	culate the work done and			5.	Quadrant			
		force re	equired?								0.3 r	4r	
	Ans	W.D =	change of kin	etic energy	1		1			circle		3π	
		=	$= \frac{1}{2} mv2$				-				100 11150	T 10 m	
		=	= 1/2x2.5x5x5					OR 1V	v Find the centroid of a 100mmX 150mm X 10mmT-section				-section.
		W.D	= 31.25 J Ans				1				Y		
		Force =	= W.D/Displac	ement							$= 100 \text{ mm} \rightarrow B$	2	
		= 31.23)/4 _7 9125 N A m	a			1			Ĩ _H L		0 mm	
		Force	=7.0125 N AI	.5			1						
0.4	i.	Differe	ence between c	entroid an	d center of grav	tv.[Anv two]	2			150 mm			
	ii.	State a	nd		e	JE J J	1						
		Prove	parallel axis th	eorem.			2				(mail 1 - 1		
	iii. Write formula of coordinate of centroid for given geometrical shape.								- F LL E				
		A Rect	angle		6	6 1	1				y y	,	
		B Tria	ngle				1						
		C Circ	le				1	Ans	Takin	g base X-X axis	as reference line.		
		D Sem	i-Circle				1				• • • •		
		E Quar	ter-Circle				1		Divid	ing the "1" section	on in to two rectar	ngles areas. (fl	ange +web)
									Area	of rectangles fla	nge $A_{i} = 100 \times 10^{-10}$	$0 = 1000 \text{ mm}^2$	1
	Ans	S.No.	Shape	\overline{x}	\overline{y}					0	10	¢.	om the bottom of
		1.	Rectangle								$y_1 = 140 + \frac{10}{2} =$	= 145 mm [⊥] 0 th	e base
				b	h						_		
				$\frac{1}{2}$	$\overline{2}$					Area of rectang	le web (2) $\Lambda = 14$	$0 \times 10 = 1400$	mm ²
				-	-					Area offeetang	$(2) R_2^{-14}$	140	
											$y_2 =$	$\frac{1}{2} = 70 \mathrm{m}$	m from the bottom of the
		2	Tulan 1						web				A.A axis
		۷.	Iriangle	h	h								
			(a)	3	<u></u>								
			(**)	J	J								

distance of centroid from bottom of web XX i. e.,

$$\overline{y} = \frac{A_1 y_1 + A_2 y_2}{A_1 + A_2} = \frac{1000 \times 145 + 1400 \times 70}{1000 + 1400}$$

$$\frac{98000 + 145000}{2400} = 101.25 \text{mm}$$

$$\overline{X} = 50 \text{ mm}$$

$$\overline{y} = 101.25 \text{mm}$$

$$1$$

$$Ans$$

What is law of conservation of momentum? Q.5 i.

> ii. Define coefficient of restitution force, and its value for elastic and plastic collision.

Coefficient of restitution (a) -	Relative velocity after collision	1			
Coefficient of restitution $(e) =$	Relative velocity before collision				
1 would be a perfectly elastic collision .					
O would be a perfectly Plastic collision .					

- iii. Drive an expression for elastic collision of two balls moving along a straight line.
- Ans The simplest type of elastic collision i.e. collision of two balls moving along a straight line. This is called collision in one dimension.

Consider that ball A of mass m1 moving with velocity v1 collides with another ball B of mass m2 moving with velocity v2. Conservation of momentum gives,

iv

kinetic energy after collision.

$m_1v_1 + mv2 = m_1v_1 + m_2v_2$	T
Conservation of K.E. gives	
$1/2 m_1 v_1^2 + 1/2 m_1 v_1^2 + 1/2 m_2 v_2^2$	1
If we solve both equations, we get	1
$v_1 = (m_1-m_2)/(m_1+m_2) v_1 + 2m_2/(m_1+m_2) v_2$	I
$v'_2 = 2m_2/(m_1+m_2) v_1 + (m_1-m_2)/(m_1+m_2) v_2$	1
Bodies will move with different velocities and hence will have different	

1

1

1

Q.5 Ans **Before Collision** m/s 4 m/s 2 kg 10 kg After Collision $m_{A} = 10 \text{ kg}$ V_{Ai} 2 m/s $m_B = 2 \text{ kg}$

 V_{Bi} = -4 m/s. The negative sign is because the velocity is in the negative

Now we need to find V_{Af} and V_{Bf}. Use the equations from above. Let's s V_{Af}.

$$V_{AF} = \frac{m_{A} - m_{B}}{m_{A} + m_{B}} V_{AI} + \frac{2m_{B}}{m_{A} + m_{B}} V_{BI}$$

Plug in our known values.

$$V_{Af} = \frac{(10 - 2)kg}{(10 + 2)kg} \cdot (2 \text{ m/s}) + \frac{2(2 \text{ kg})}{(10 + 2)kg} \cdot (-4 \text{ m/s})$$

1

$$V_{Af} = \frac{8}{12} \cdot (2 \text{ m/s}) + \frac{4}{12} \cdot (-4 \text{ m/s})$$
$$V_{Af} = \frac{16}{12} \text{ m/s} + \frac{-16}{12} \text{ m/s}$$

 $V_{Af} = 0 \text{ m/s}$

The final velocity of the larger mass is zero. The collision completely stomass. ${f 1}$

Now for V_{Bf}

$$V_{Bf} = \frac{2m_{A}}{(m_{A} + m_{B})} V_{Ai} + \frac{(m_{B} - m_{A})}{(m_{A} + m_{B})} V_{Bi}$$

$$V_{Bf} = \frac{2(10 \text{ kg})}{(10 + 2) \text{ kg}} \cdot 2 \text{ m/s} + \frac{(2 - 10) \text{ kg}}{(10 + 2) \text{ kg}} \cdot -4 \text{ m/s}$$

$$V_{Bf} = \frac{20 \text{ kg}}{12 \text{ kg}} \cdot 2 \text{ m/s} + \frac{-8 \text{ kg}}{12 \text{ kg}} \cdot -4 \text{ m/s}$$

$$V_{Bf} = \frac{40}{12} \text{ m/s} + \frac{32}{12} \text{ m/s}$$

$$V_{Bf} = \frac{72}{12} \text{ m/s}$$

$$V_{Bf} = 6 \text{ m/s}$$

- Q.6 i. Define angle of repose with diagram?
 ii. Write application of static and dynamic friction. [Any three]
 - iii. Difference between open and cross belt drive.[Any five]
 - iv. A body of weight 100 Newtons is placed on a rough horizontal plan.Determine the co-efficient of friction if a horizontal force of 60 Newtons just causes the body to slide over the horizontal plane.

Ans Weight of body, W = 100 N

Horizontal force applied,

P = 60N

∴ Limiting force of friction,

F = P = 60N

Let $\mu = Co$ -efficient of friction.

The normal reaction of the body is given as

 $R = W = 100 \ N$

Using equation (3.1),

$$F = \mu R$$
 1

1

1

1

1

or
$$\mu = \frac{F}{R} = \frac{60}{100} = 0.6$$
 Ans.

1

1

1

3